f-Kenmotsu manifolds with the Schouten-van Kampen connection

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Submanifolds of Kenmotsu Manifolds Admitting Quarter Symmetric Metric Connection

The object of this paper is to study invariant submanifolds M of Kenmotsu manifolds M̃ admitting a quarter symmetric metric connection and to show that M admits quarter symmetric metric connection. Further it is proved that the second fundamental forms σ and σ with respect to LeviCivita connection and quarter symmetric metric connection coincide. Also it is shown that if the second fundamental f...

متن کامل

Harmonic Maps and Stability on f-Kenmotsu Manifolds

In Section 2, we give preliminaries on f-Kenmotsu manifolds. The concept of f-Kenmotsu manifold, where f is a real constant, appears for the first time in the paper of Jannsens and Vanhecke 1 . More recently, Olszak and Roşca 2 defined and studied the f-Kenmotsu manifold by the formula 2.3 , where f is a function on M such that df ∧ η 0. Here, η is the dual 1-form corresponding to the character...

متن کامل

Van Kampen theorems for toposes

In this paper we introduce the notion of an extensive 2-category, to be thought of as a “2-category of generalized spaces”. We consider an extensive 2-category K equipped with a binary-product-preserving pseudofunctor C : K op → CAT, which we think of as specifying the “coverings” of our generalized spaces. We prove, in this context, a van Kampen theorem which generalizes and refines one of Bro...

متن کامل

Harmonic Maps on Kenmotsu Manifolds

We study in this paper harmonic maps and harmonic morphisms on Kenmotsu manifolds. We also give some results on the spectral theory of a harmonic map for which the target manifold is a Kenmotsu manifold.

متن کامل

The Seifert–van Kampen Theorem in Homotopy

Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2017

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim1716093y